

http://proteomics.cancer.gov

September 26, 2006

MS VENDOR ORIENTATION MEETING (RFA-CA-07-012)

Henry Rodriguez, Ph.D., MBA

Program Director

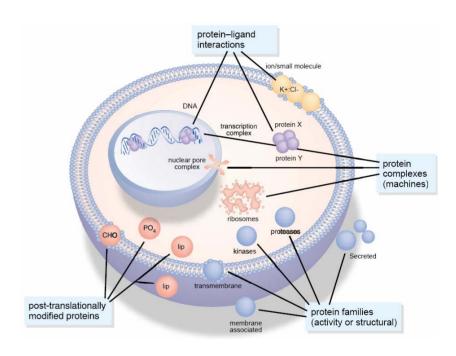
Clinical Proteomic Technologies Initiative for Cancer National Cancer Institute

Today's Agenda

Government / Industry Partnerships

- Challenges of Clinical Proteomics
- Clinical Proteomic Technologies Initiative (CPTI)
 Core Programs
- Clinical Proteomic Technology Assessment for Cancer Teams (CPTACs): Role, Key Features, and Goals
 - Role and Benefit to Technology Providers

Government / Industry Partnerships



- NCI's Office of Technology and Industrial Relations (OTIR)
 focuses on technology-based initiatives to accelerate the creation
 and use of tools that will bring a new generation of molecularbased diagnostics and therapeutics to the clinic
- OTIR encourages new technology development and promotes collaborations between NCI and the private sector
- Purpose of teleconference:
 - Present NCI's Clinical Proteomic Technologies Initiative
 - Reinforce the need for collaboration of MS technology developers with NCI scientists and program investigators to advance proteomics from a research tool to clinical application

Clinical Proteomics Today

- No single technology platform can satisfy all of the desired proteomic measurements
- No shared performance criteria
 - Poor confidence in protein measurement results
 - Difficulty in assessing agreement of different experiments
 - Conflicting reports in the literature
 - Lost opportunities

Scott D. Patterson & Ruedi H. Aebersold, Proteomics: the first decade and beyond, *Nature Genetics* 33, 311-323 (2003)

Community Input and Consensus

 On the basis of discussions with a wide range of clinicians, cancer researchers, and technologists, the NCI recognized that there are immense opportunities for using proteomic technologies to solve mission-critical problems in cancer research.

Premises:

- Proteins/peptides exist in readily accessible body fluids that can serve as useful indicators of a disease state
- Profiles of such proteins/peptides can be used for diagnostic/clinical purposes
- Panels of such markers will be required to achieve high specificity and sensitivity
- Current technology is capable of discovering these panels
- Current application of this technology to discovery can be improved

Sources of Variability in Existing Proteomic Technologies

- Specimen handling and processing
- Platform evaluation
 - Technical (resolution, accuracy, dynamic range, sensitivity, reproducibility)
 - Cross verification among platforms
- Data acquisition/Bioinformatics
- Data analysis
- Publication uniformity

Goal: Assurance that protein measurement results are due to changes in the sample and not changes or variability due to:

Instrument

Operator

Assay performance

Site

Reagents

Challenges to the Clinical Measurement of Proteins

- Pervasive problems with research design, data analysis, reproducibility, and comparability of research results
- Lack of common reagents and highly qualified public data sets
- Ineffective and inefficient transfer of platform technologies to clinical application (technology gap)
- Inability to manage and interpret large quantities of pre-processed data

NCI is uniquely positioned to help the scientific community and technology providers address these challenges:

- Integration with NIH institutes
- Clinical trials
- Collaborations with industry and other organizations
- Translation into practice

Overcoming Challenges in Proteomics: NCI Clinical Proteomic Technologies Initiative for Cancer (CPTI)

- **Scope:** 5-year, \$104M
- Objective: Integrated approach to assess, enhance and develop proteomic technology measurement capabilities

Key Components:

- Build a multidisciplinary team framework
- Refine and standardize technologies, and statistical/analytical methods
- Develop and evaluate new technical approaches

Scientific Goals:

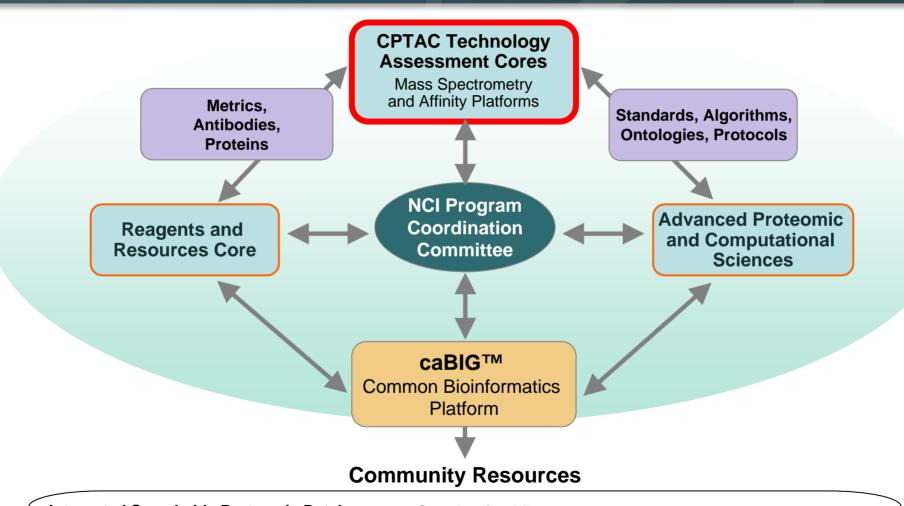
- Build a foundation of technologies; data; reagents and reference materials; analysis systems; and infrastructure
- Systematically advance understanding of protein biology in cancer
- Accelerate discovery research and clinical proteomics

Components of CPTI Program

1. Clinical Proteomic Technology Assessment for Cancer (CPTAC) (RFA-CA-07-012)

- Evaluate existing proteomic analysis platforms to reliably identify,
 quantify, and compare peptides/proteins in complex biological mixtures
- Mass spectrometry and Affinity-based technologies
- Multidisciplinary Team approach

2. Advanced Proteomic Platforms and Computational Sciences (RFA-CA-07-005)


 Support highly innovative research in the "quantitative" analysis of peptides/proteins of interest in clinical cancer studies

3. Clinical Proteomic Reagents Resource

Proteins, peptides, antibodies, proficiency testing materials, and informatics

Clinical Proteomic Technologies Initiative Strategy

- Integrated Searchable Proteomic Database
- Highly Qualified Biospecimens

- Standardized Reagents
- Optimized Technology Platforms
- Proteomic Standards
- New Technologies 10

Objectives of the CPTAC Program

- **Objective 1:** Evaluate performance of proteomic technology platforms and standardize approaches to developing applications using these platforms;
- Objective 2: Evaluate proteomic platforms for their ability to analyze cancerrelevant proteomic changes in human clinical specimens;
- Objective 3: Establish systematic ways to standardize proteomic protocols and data analysis among multiple laboratories;
- Objective 4: Develop and implement uniform algorithms for sharing bioinformatics and proteomic data and analytical/data mining tools across the scientific community;
- Objective 5: Develop well-defined and comprehensively characterized sets of standard/reference materials and reagents to serve as resources for the research community.

Mass Spec Platforms - Configurations

Mass Resolution - ability to discriminate between two m/z values that are close to one another Mass Accuracy - true m/z value of the particle of interest Mass Range - the high and low m/z values that can be detected

Instrument Sensitivity - minimal amount of analyte that can be detected

Protein/Peptide ID Mass Spec Technologies

Peptide/Protein ID

1 Protein Separation

1-D LC

2-D LC

Microfluidics/LC

Affinity columns (e.g. Ab)

Affinity capture (non-Ab)

2 Ion Source

ESI

MALDI

3 Mass Analyzer

Ion Trap

Triple Quadrupole

QTOF

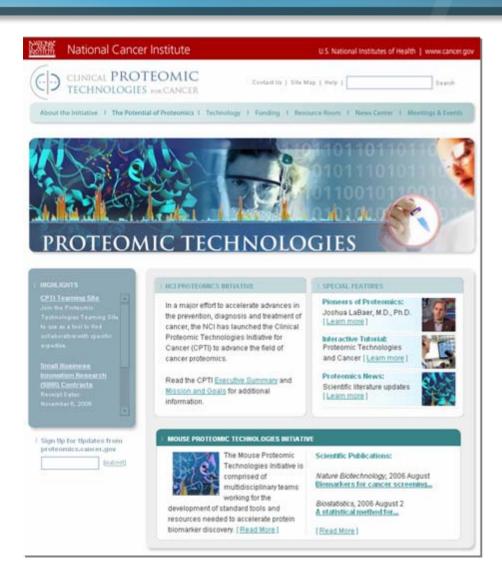
FTICR

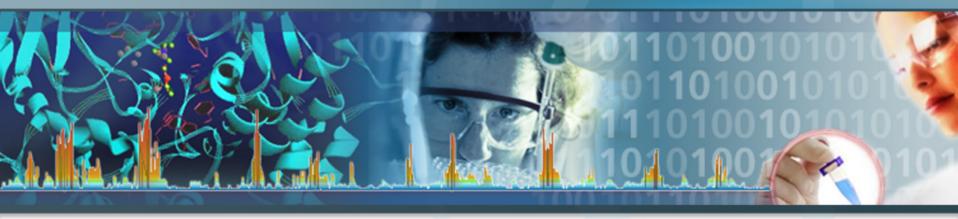
TOF

TOF/TOF

Role and Benefit to Technology Providers in CPTAC

- Are full collaborative partners with CPTI/NCI, CPTAC research teams
- Help formulate direction and planning for assessment of technologies
- Provide technical expertise and direction on optimal use of technology platforms (provider in-house teams critical to success)
- Take insights generated by CPTAC back into platform development process to maximize utility
- Have immediate access to CPTAC methodologies and data that can inform vendor-directed use of platforms by all users/customers
- Existing Collaborations:
 - National Institute of Standards and Technology
 - Argonne National Laboratory
 - European Bioinformatics Institute




Communication to Stakeholders

- Archived viewing is available through the website http://proteomics.cancer.gov
- Email questions to cancer.proteomics@mail.nih.gov

Website: http://proteomics.cancer.gov

Questions

